Alteration to hippocampal shape in cannabis users with and without schizophrenia

Nadia Solowij a,b,⁎, Mark Walterfang c,d, Dan I. Lubman e, Sarah Whittle c, Valentina Lorenzetti c, Martin Styner f,g, Dennis Velakoulic c,d, Christos Pantelis c, Murat Yücel c

a School of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia
b Schizophrenia Research Institute, 405 Liverpool St., Darlinghurst, NSW 2010, Australia
c Neuropsychiatry Unit, Level 2, John Cade Building, Royal Melbourne Hospital 3050, Australia
d Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Australia
e Neuropsychiatry Unit, Test, John Cade Building, Royal Melbourne Hospital, Elwood, Victoria, Australia
f School of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia

corresponding author at: School of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia. Tel.: +61 2 4221 3732; fax: +61 2 4221 4163.
E-mail address: nadia@uow.edu.au (N. Solowij).

⁎ Corresponding author at: School of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia. Tel.: +61 2 4221 3732; fax: +61 2 4221 4163.
E-mail address: nadia@uow.edu.au (N. Solowij).

ABSTRACT

Abnormalities in hippocampal morphology are characteristic of schizophrenia and have also been reported in chronic cannabis users. There is a paucity of research investigating potential additive effects of cannabis use on brain pathology associated with schizophrenia. In this study, we performed hippocampal shape analysis in cannabis-using and non-using patients with schizophrenia, healthy cannabis users and healthy non-using controls. Hippocampal shape changes were observed in each group relative to controls, with the greatest degree of alterations (i.e., deflations across the hippocampus, and with an anterior predisposition), in cannabis-using schizophrenia patients. These alterations were associated with cannabis use patterns and psychotic symptoms.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Cannabis use is highly comorbid with schizophrenia (Koskinen et al., 2010) and considered a component cause of the disorder (Murray et al., 2007; D’Souza et al., 2009). There is growing evidence that long-term or heavy cannabis use impacts upon brain structure and function, particularly in regions known to be affected in schizophrenia, such as the hippocampus (Solowij and Michie, 2007; Lorenzetti et al., 2010; Ashtari et al., 2011; Solowij et al., 2012). We have previously reported dose-related reductions in hippocampal volume in otherwise healthy chronic cannabis users that were associated with subclinical positive psychotic symptoms (Yücel et al., 2008), and were of a magnitude similar to that observed in schizophrenia (e.g. Velakoulic et al., 1999). A key question is whether effects associated with comorbid chronic cannabis use and schizophrenia exceed those associated with either condition occurring in isolation.

We sought to address this question by assessing hippocampal volume and performing hippocampal shape analysis to inform regional specificity in healthy cannabis users and in cannabis using and non-using patients with schizophrenia. In line with a recent study that reported greater hippocampal shape alterations in patients with schizophrenia and prior comorbid alcohol use disorders (Smith et al., 2011), we hypothesised that cannabis use would exert an additional effect on the hippocampal pathology typically observed in schizophrenia, particularly in the anterior hippocampus (Csernansky et al., 2002; Tamminga et al., 2010; Small et al., 2011).

2. Experimental/Materials and methods

2.1. Participants, substance use and clinical measures

Seventeen medicated patients with schizophrenia, 15 long-term heavy cannabis users (THC) and 16 healthy controls (CON), all right handed males, were recruited from the general community, by referral from psychiatrists or through the Australian Schizophrenia Research Bank register, and provided written informed consent. Eight of the patient group were long-term cannabis users (SZ + THC), with similar extensive levels of use as the healthy THC group (near daily for 10–32 years), while nine patients had never used cannabis regularly (SZ − THC). No participant had used any other illicit substance >10 times and alcohol use was limited to <24 standard drinks per week. All groups were matched on age (range 21–60 years), premorbid IQ (National Adult Reading Test) and education, but alcohol and tobacco use differed between groups. Demographic, clinical and substance use characteristics (elicited by structured interview) are provided in Table 1 (see also Solowij et al., 2011).

http://dx.doi.org/10.1016/j.schres.2012.10.040
The Structured Clinical Interview for DSM-IV Axis I Disorders was used to exclude psychiatric disorders among healthy participants and to confirm a schizophrenia diagnosis in patients. Psychotic symptoms were assessed using the Scales for the Assessment of Positive and Negative Symptoms (SAPS and SANS; Andreasen, 1983). Healthy cannabis users had significantly higher SAPS (z = 3.57, p < .0005) and SANS (z = 3.66, p < .0005) scores than controls. The two patient groups (SZ + THC and SZ – THC) did not differ in symptom scores (SAPS: p > .19; SANS: p > .09), which were higher than those observed in the healthy cannabis users (THC vs. SZ + THC, SAPS: z = 3.07, p = .002; SANS: z = 3.39, p = .001; THC vs. SZ – THC, SAPS: z = 1.88, p = .060, SANS: z = 2.69, p = .007). All protocols were approved by university and regional health ethics committees.

2.2. Neuroimaging procedures, measurements and statistical analyses

MRI data were acquired from a 3-Tesla scanner using a volumetric SPGR sequence with 180 contiguous coronal slices (TE, 2.9 ms; TR, 6.4 ms; flip-angle, 8°; matrix-size, 256 × 256; 1 mm³ voxels).

Hippocampal volumes were measured using established protocols (Velakoulis et al., 1999) and delineated by a trained rater blind to group information (see Yücel et al., 2008). Left and right hippocampal volumes were compared between groups by ANOVA. Shape analysis was undertaken in a semi-automated fashion using the University of North Carolina shape analysis toolkit — spherical harmonic shape description (SPHARM-PDM; Brechbuhler et al., 1995); a detailed description of the methodology is available in Styner et al. (2004, 2006). We utilised MANCOVA within SPHARM-PDM to control for alcohol and tobacco use in between-group analyses, while controlling for multiple comparisons using the false discovery rate (FDR) correction procedure (Pantazis et al., 2004; Styner et al., 2004; Paniagua et al., 2009), and the toolkit’s correlational analysis to calculate Spearman’s correlations with cannabis use parameters and psychotic symptoms.

Table 1	Demographic, clinical, drug use and MRI volumetric measures: mean (SD) or median [range].				
THC	CON	SZ + THC	SZ – THC		
Age	39.8 (8.9)	36.4 (9.8)	37.5 (6.6)	44.1 (8.6)	.21
IQ	109.2 (6.3)	113.9 (8.1)	110.6 (9.2)	105.5 (11.8)	.14
Years of education	13.5 (3.2)	14.8 (3.7)	13.4 (3.0)	14.9 (3.8)	.58
SAPS composite score	6.0 [0–28]	0.0 [0–4]	30.0 [12–43]	16.0 [3–43]	< .001
SANS composite score	12.0 [0–25]	1.5 [0–4]	31.0 [16–43]	24.0 [12–35]	< .001
Duration of illness	–	–	14.1 (5.9)	23.6 (11.2)	.049
Age at diagnosis	–	–	20.5 [17–37]	20.0 [16–27]	.56
Cannabis					
Years of regular use	19.7 (7.3), range 10–32	–	17.9 (6.5), range 11–29	–	.57
Age started regular use	20.1 (5.4), range 12–34	–	19.6 (6.2), range 13–29	–	.84
Current use (days/month)	28 (4.6)	–	25 (8.1)	–	.34
Current use (cones/month)	636 (556)	–	644 (344)	–	.97
Cumulative exposure (past 10 years)	77816 (66542)	–	62925 (25756)	–	.55
Alcohol (stand. drinks/week)	7.0 [0–24]	4.0 [0–16]	7.0 [0–21]	0 [0–10]	.028
Tobacco (cigarettes/day)	20 [1–35]	0 [0–14]	20 [0–35]	7 [0–35]	< .001
Intracranial cavity	1 546 237 (94 018)	1 607 590 (126 386)	1 539 072 (157 846)	1 486 687 (164 022)	.17
Whole brain volume	1 310 780 (90 779)	1 374 123 (105 673)	1 293 879 (145 199)	1 239 308 (155 894)	.063
Left hippocampal volume	2849 (270)	3240 (423)	3036 (374)	3044 (300)	.03
Right hippocampal volume	2949 (244)	3348 (400)	3144 (383)	3003 (264)	.01
Cumulative exposure (past 10 years)	77816 (66542)	–	62925 (25756)	–	.55
Alcohol (stand. drinks/week)	7.0 [0–24]	4.0 [0–16]	7.0 [0–21]	0 [0–10]	.028
Tobacco (cigarettes/day)	20 [1–35]	0 [0–14]	20 [0–35]	7 [0–35]	< .001
Intracranial cavity	1 546 237 (94 018)	1 607 590 (126 386)	1 539 072 (157 846)	1 486 687 (164 022)	.17
Whole brain volume	1 310 780 (90 779)	1 374 123 (105 673)	1 293 879 (145 199)	1 239 308 (155 894)	.063
Left hippocampal volume	2849 (270)	3240 (423)	3036 (374)	3044 (300)	.03
Right hippocampal volume	2949 (244)	3348 (400)	3144 (383)	3003 (264)	.01

3. Results

3.1. Hippocampal volume

Neither tobacco nor alcohol use correlated with hippocampal volumes in the entire sample (cigarettes/day: left: − .09, p = .66; right: − .13, p = .52; standard drinks/day: left: − .18, p = .29; right: − .14, p = .42) or in any subgroup, and were therefore not included as covariates. The overall difference between the 4 groups was significant for both the left and right hippocampus (Table 1) with the THC group having smaller hippocampi bilaterally than CON (left: F1,29 = 9.25, p = .005; right: F1,29 = 11.05, p = .002). The THC group did not differ from either of the schizophrenia groups (SZ + THC: left p = .18, right p = .15; SZ – THC: left p = .11, right p = .62). The SZ + THC group did not differ significantly from controls (left p = .26, right p = .25), whereas SZ – THC had smaller right (F1,23 = 5.33, p = .03) but not left (p = .23) hippocampi than CON. Combining the two schizophrenia groups confirmed a significant difference from CON for the right (F1,31 = 4.88, p = .035) but not left (p = .14) hippocampus. SZ + THC and SZ – THC did not differ in volume (left p = .96, right p = .39).

3.2. Between-group shape comparisons

Fig. 1 shows the raw and FDR-corrected p-value and difference maps from between-group comparisons of hippocampal shape, with each clinical group compared against CON. Regional shape alterations were observed in each group, but only the large reductions (areas of deflation up to 4 mm) in the left hippocampus of the SZ + THC group survived the conservative FDR correction. The overall shape change in the left hippocampus was significant between SZ + THC and CON (p = .003), falling just short of significance on the right (p = .058) (with areas of deflation up to 2 mm). SZ – THC showed shape alterations in regions of the head and body of the hippocampus, with areas of deflation of approximately 2 mm in the left and 1.5 mm
in the right hippocampus. The overall shape change across the surface showed trend level significance for SZ−THC compared to CON \((p = .056)\) in the left hippocampus, but not in the right \((p = .24)\). Similarly, THC showed bilateral differences compared to CON, with larger regions of deflation in the right hippocampus, and of a similar magnitude to that observed in SZ−THC. There was a significant overall shape change for THC compared to CON in the right hippocampus \((p = .045)\), with a trend in the left hippocampus \((p = .085)\). The same pattern of results was obtained after covarying for alcohol and tobacco use.

3.3. Correlational shape analyses

The cumulative dose of exposure to cannabis, amount and frequency of use in the past month, and duration of use, all showed significant negative correlation with hippocampal shape in the cannabis-using group as a whole (THC and SZ+THC) (examples shown in Fig. 2), suggesting greater regional deflation with greater exposure to cannabis. Duration of illness in the schizophrenia group as a whole (SZ+THC and SZ−THC) correlated with the shape of some regions of the hippocampal head, being reduced with increasing years of illness. SAPS and SANS symptom scores correlated with hippocampal shape in the THC, SZ+THC and SZ−THC groups, most prominently in SZ+THC, with both positive and negative symptom scores showing a strong correlation with widespread hippocampal deflation bilaterally (Fig. 3). However, none of these correlations survived FDR correction, likely due to the small sample size.

4. Discussion

Hippocampal pathophysiology is evident in a diverse range of disorders that appear to differentially target distinct subregions of the hippocampus (Small et al., 2011). Despite our limited sample size, shape analysis determined additive effects of cannabis to the hippocampal pathology evident in schizophrenia, when significant volumetric differences were not observed between patients who used cannabis and those that did not. The regional specificity of changes in the shape of the hippocampus in SZ+THC, most significant in the tip of the tail, head and midway down the body, supports the sensitivity of shape analysis to detecting alterations in the absence of a volume difference. The global shape change in the THC group, on the other hand, suggests more diffuse alterations that parallel the overall volume reduction observed. Cannabis exposure in both groups was associated with deflations in anterior and medial areas that may correspond to the dentate gyrus and CA3/4 regions. We also observed strong associations between hippocampal regional deflations.

![Fig. 1. Shape statistical analysis significance maps showing comparisons between schizophrenia patients with cannabis use (SZ+THC) versus healthy controls (CON) (top), schizophrenia patients without cannabis use (SZ−THC) versus CON (middle) and healthy cannabis users (THC) versus CON (bottom). Left hippocampus is depicted on the left and right hippocampus on the right, displaying superior and inferior views. For each view, raw \(p\)-value maps, FDR-corrected \(p\)-value maps, and mean difference magnitude displacement maps are shown (the latter visualising group test local effect size by displaying the magnitude of deflation (in mm) between the same points on the mean surface of each group (Styner et al., 2006)).](image-url)
and psychotic symptoms in the cannabis-using schizophrenia patients, findings that require replication with a larger sample.

While the mechanism underlying hippocampal shape changes is not known, the altered regions are dense with cannabinoid receptors (Glass et al., 1997), which may be dysfunctional in the pathology of schizophrenia and as a result of long-term exposure to cannabis (Villares, 2007). Our findings support an interpretation of dose-dependent neurotoxic effects, broadly across the hippocampus, as evidenced also by animal studies (see Solowij et al., 2012). The combined effects of comorbid chronic cannabis use and schizophrenia appear to exceed those of either condition occurring in isolation, consistent with other recent studies (Rais et al., 2008; Habets et al., 2011; Solowij et al., 2011). Future studies with larger samples could examine further gender effects and the functional, clinical and neuropsychological correlates of this neuropathology.

Role of funding source
This study was supported by grants from the Clive and Vera Ramaciotti Foundation for Biomedical Research, the National Health and Medical Research Council (NHMRC) of Australia (Project Grant 459111) and the Schizophrenia Research Institute using infrastructure funding from NSW Health. The study was also supported by the Australian Schizophrenia Research Bank (ASRB), which is supported by the NHMRC, the Pratt Foundation, Ramsay Health Care, the Viertel Charitable Foundation and the Schizophrenia Research Institute. NS is supported by an Australian Research Council Future Fellowship (FT1100100752). CP is supported by a NHMRC Senior Principal Research Fellowship 628386 and Program Grant 566526. MY is supported by a NHMRC Fellowship Award 1001973 and SW by a NHMRC Career Development Fellowship 1007716. MS is supported by NIH grants P40 HD 03110 (IDDRC) and U54 EB005149 (NA-MIC). No funding body had any further role in the study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the paper for publication.

Contributors
All authors made a significant contribution to the study and the preparation of the manuscript. Solowij, Walterfang and Yücel designed the study and wrote the first draft of the manuscript. Walterfang conducted the shape analyses in collaboration and consultation with Styner, Velakoulis and Pantelis. Lubman and Pantelis contributed to the conceptualisation and implementation of the study. Lorenzetti and Whittle performed the manual tracing of the hippocampus. All authors contributed to the editing of the manuscript and approved the final version.

Conflict of interest
There are no conflicts of interests between the authors and the reported research. In the past three years, MW has provided consultancy for Actelion Pharmaceuticals Australia; DL has received speaking honoraria from Astra Zeneca Pharmaceuticals and Janssen-Cilag, as well as provided consultancy support to Lundbeck; DV has received

Fig. 2. Correlations in the entire cannabis-smoking group (THC and SZ + THC) between hippocampal shape and cumulative exposure to cannabis over the past 10 years (top) and frequency of cannabis use in the past month (bottom), with left hippocampus on the left and right hippocampus on the right, displaying superior and inferior views. Raw p-value maps and Spearman’s rho-value maps are shown. The significance of these correlations did not survive FDR correction (FDR-corrected p-value maps not shown).
speaking honoraria from Pfizer, Astra Zeneca, and Eli Lilly; CP has provided consultancy for Janssen-Cilag, Eli Lilly, Hospira (Mayne), Astra Zeneca, Pfizer, Schering Plough, and Lundbeck and has undertaken investigator initiated studies supported by Eli Lilly, Hospira, Janssen-Cilag, and Astra Zeneca; and MY has received a speaking honorarium from Janssen-Cilag. These activities are unrelated to the present work.

Acknowledgements

The authors are grateful to Colleen Respondek for contributing to data collection.

References

Andreasen, N.C., 1983. The Scales for the Assessment of Positive (SAPS) and Negative (SANS) Symptoms. University of Iowa, Iowa City.

Fig. 3. Correlations in the cannabis-using schizophrenia group (SZ+THC) between hippocampal shape and positive symptoms (SAPS score; top) and negative symptoms (SANS score; bottom), with left hippocampus on the left and right hippocampus on the right, displaying superior and inferior views. Raw p-value maps and Spearman’s rho-value maps are shown. The significance of these correlations did not survive FDR correction (FDR-corrected p-value maps not shown).

